A Hierarchical Modeling Framework for Multiple Observer Transect Surveys
نویسندگان
چکیده
Ecologists often use multiple observer transect surveys to census animal populations. In addition to animal counts, these surveys produce sequences of detections and non-detections for each observer. When combined with additional data (i.e. covariates such as distance from the transect line), these sequences provide the additional information to estimate absolute abundance when detectability on the transect line is less than one. Although existing analysis approaches for such data have proven extremely useful, they have some limitations. For instance, it is difficult to extrapolate from observed areas to unobserved areas unless a rigorous sampling design is adhered to; it is also difficult to share information across spatial and temporal domains or to accommodate habitat-abundance relationships. In this paper, we introduce a hierarchical modeling framework for multiple observer line transects that removes these limitations. In particular, abundance intensities can be modeled as a function of habitat covariates, making it easier to extrapolate to unsampled areas. Our approach relies on a complete data representation of the state space, where unobserved animals and their covariates are modeled using a reversible jump Markov chain Monte Carlo algorithm. Observer detections are modeled via a bivariate normal distribution on the probit scale, with dependence induced by a distance-dependent correlation parameter. We illustrate performance of our approach with simulated data and on a known population of golf tees. In both cases, we show that our hierarchical modeling approach yields accurate inference about abundance and related parameters. In addition, we obtain accurate inference about population-level covariates (e.g. group size). We recommend that ecologists consider using hierarchical models when analyzing multiple-observer transect data, especially when it is difficult to rigorously follow pre-specified sampling designs. We provide a new R package, hierarchicalDS, to facilitate the building and fitting of these models.
منابع مشابه
Double-observer line transect surveys with Markov-modulated Poisson process models for animal availability.
We develop maximum likelihood methods for line transect surveys in which animals go undetected at distance zero, either because they are stochastically unavailable while within view or because they are missed when they are available. These incorporate a Markov-modulated Poisson process model for animal availability, allowing more clustered availability events than is possible with Poisson avail...
متن کاملDouble-observer line transect methods: levels of independence.
Double-observer line transect methods are becoming increasingly widespread, especially for the estimation of marine mammal abundance from aerial and shipboard surveys when detection of animals on the line is uncertain. The resulting data supplement conventional distance sampling data with two-sample mark-recapture data. Like conventional mark-recapture data, these have inherent problems for est...
متن کاملSeabirds At-Sea Surveys: The Line-Transect Method Outperforms the Point-Transect Alternative
Methods: We tested whether modeling of detection probabilities, and density estimates with their coefficients of variation obtained from the point-transect method provided more robust and precise results than the more commonly used line-transect method. We subdivided our data by species groups (alcids, and aerialist species), and into two behavior categories (flying vs. swimming). We also compu...
متن کاملA Unimodal Model for Double Observer Distance Sampling Surveys
Distance sampling is a widely used method to estimate animal population size. Most distance sampling models utilize a monotonically decreasing detection function such as a half-normal. Recent advances in distance sampling modeling allow for the incorporation of covariates into the distance model, and the elimination of the assumption of perfect detection at some fixed distance (usually the tran...
متن کاملEstimates of Duck Breeding Populations in the Nebraska Sandhills Using Double Observer Methodology
—The Nebraska Sandhills are an important area for breeding ducks in the Great Plains, but reliable estimates of breeding populations are unavailable. Double-observer methodology was used to estimate abundance of breeding duck populations in the Nebraska Sandhills. Aerial transect surveys were conducted using methodology similar to the cooperative Waterfowl Breeding Population and Habitat Survey...
متن کامل